
PHOTON PROPAGATOR (A REVIEW)

I. THE VECTOR POTENTIAL

The inhomogeneous wave equation for the four-dimensional vector

potential Aµ = (A0 = Φ, A1, A2, A3) is

∂2Aµ(x)

∂(x0)2
−∇2Aµ(x) = Jµ(x) (1)

where Φ is the scalar potential, Jµ = (cρ, J1, J2, J3) is the four-dimensional

current density, and ρ is the charge density. Eq. (1) can be derived from

Maxwell’s equations and by invoking the Lorenz condition ∂µA
µ = 0,

i.e.,

∂A0

∂x0
+

∂A1

∂x1
+

∂A2

∂x2
+

∂A3

∂x3
= 0. (2)

Introduce the function DF (x − y), which is defined as the solution to

∂2DF (x− y)

∂(x0)2
−∇2DF (x− y) = δ4(x− y). (3)

It will be verified that the solution to Eq. (1) is
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Aµ(x) =

∫

DF (x − y)Jµ(y)d4 y (4)

where the integral is over all spacetime. Substitute Eq. (4) into Eq. (1),

and find

∂2Aµ(x)

∂(x0)2
−∇2Aµ(x) =

∫

(
∂2DF (x − y)

∂(x0)2
−∇2DF (x − y))Jµ(y)d4 y =

∫

δ4(x− y)Jµ(y) d4 y = Jµ(x) . (5)

Thus, we recover Eq. (1).

II. THE PHOTON PROPAGATOR

We shall write DF (x − y) as the Fourier transform of DF (q), i.e.,

DF (x − y) =

∫

exp (−iq · (x − y))DF (q)
d4q

(2π)4
(6)

where q = (q0, q1, q2, q3) is the four-dimensional wave vector. We shall

now determine DF (q). Substitute Eq. (6) in Eq. (3), and find

∂2DF (x − y)

∂(x0)2
−∇2DF (x − y) =

∫

(
∂2

∂(x0)2
−∇2) exp (−iq · (x − y))DF (q)

d4 q

(2π)4

=

∫

(−(q0)2 + |q|2) exp (−iq · (x − y))DF (q)
d4 q

(2π)4
. (7)

Use
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∫

exp (−iq · (x− y))
d4 q

(2π)4
= δ4(x − y) (8)

to show

∫

[

−
(

(q0)2 − |q|2
)

DF (q)− 1
]

exp (−iq · (x − y)
d4 q

(2π)4
= 0, (9)

so

((q0)2 − |q|2)DF (q) = −1. (10)

A solution to Eq. (10) is DF (q) = −1/((q0)2 − |q|2), but this is not the

most general solution. The most general solution is

DF (q) =
−1

(q0)2 − |q|2
+ C1δ(q

0 − |q|) + C2δ(q
0 + |q)). (11)

This can be verified by multiplying Eq. (11) by (q0)2 − |q2| and using

(q0 − |q|)δ(q0 − |q|) = 0 and (q0 + |q|)δ(q0 + |q|) = 0; Eq. (10) is

recovered. Use partial fractions to show

−1

(q0)2 − |q|2
=

−1

2|q|

( 1

q0 − |q|
−

1

q0 + |q|

)

, (12)

so
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DF (q) =
−1

2|q|

( 1

q0 − |q|

)

+C1δ(q
0−|q|)+

1

2|q|

( 1

q0 + |q|

)

+C2δ(q
0+|q|).

(13)

The integral

I =

∫

+∞

−∞

DF (q) exp (−iq0(x0 − y0))dq0 = I1 + I2 (14)

will be evaluated using reasonable physical constraints, which in turn,

will determine the constants C1 and C2. Here

I1 =

∫

+∞

−∞

+1

2|q|

( −1

q0 − |q|
+

1

q0 + |q|

)

exp (−iq0(x0 − y0))dq0, (15)

and

I2 =

∫

+∞

−∞

[C1δ(q
0 − |q|) + C2δ(q

0 − |q|)] exp (−iq0(x0 − y0))dq0 =

C1 exp (−i|q|(x0 − y0)) + C2 exp (+i|q|(x0 − y0)). (16)

To evaluate I1 using contour integration, introduce the closed con-

tour where ε is a small positive constant:

(1) from −M to −|q| − ε along the q0 axis

(2) from −|q| − ε to −|q|+ ε along a semi-circle of radius ε, which

is centered at −|q|, and is below the q0 axis.

(3) from −|q|+ ε to +|q| − ε along the q0 axis
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(4) from +|q| − ε to +|q|+ ε along a semi-circle of radius ε, which

is centered at +|q|, and is below the q0 axis.

(5) from +|q| + ε to +M along the q0 axis

(6) +M to −M along a semi-circle SM of radius M , which is cen-

tered at the origin of the q0 axis and is below the axis.

This contour will be referred to as contour C1. There are no poles

inside the contour, so the integral around the contour is zero. When

x0 − y0 > 0 and M → ∞, the integral vanishes on SM . We identify I1

as a Cauchy principle value, which was defined in paper 1, so

I1 = −πiRes(q0 = +|q|)− πiRes(q0 = −|q|) =

+πi

2|q|

(

exp (−i|q|(x0 − y0)) − exp (+i|q|(x0 − y0))
)

(17)

subject to the condition that x0 − y0 > 0. Use this result in Eq. (14)

and find

I =
(+πi

2|q|
+ C1

)

exp (−i|q|(x0 − y0))H(x0 − y0)+

(−πi

2|q|
+ C2

)

exp (+i|q|(x0 − y0))H(x0 − y0). (18)

H is the unit step function defined by H(x0 − y0) = 1 if x0 − y0 > 0

and H(x0 − y0) = 0 if x0 − y0 < 0. The first exponential represents a

photon of positive energy traveling forward in time from y to x. The
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second term represents a photon of negative energy traveling forward

in time. This is rejected as being unphysical. We can eliminate the

second term by setting C2 equal to +πi/(2|q|)

Next, we evaluate Eq. (15) when x0 − y0 < 0. Introduce the closed

contour:

(1) from −M to −|q| − ε along the q0 axis

(2) from −|q| − ε to −|q|+ ε along a semi-circle of radius ε, which

is centered at −|q|, and is above the q0 axis.

(3) from −|q|+ ε to +|q| − ε along the q0 axis

(4) from +|q| − ε to +|q|+ ε along a semi-circle of radius ε, which

is centered at +|q|, and is above the q0 axis.

(5) from +|q| + ε to +M along the q0 axis

(6) +M to −M along a semi-circle SM of radius M , which is cen-

tered at the origin of the q0 axis and is above the axis.

This contour will be referred to as contour C2. There are no poles

inside the contour, so the integral around the contour is zero. When

x0 − y0 < 0 and M → ∞, the integral vanishes on SM . Again, we

identify I1 as a Cauchy principle value, so
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I1 = +πiRes(q0 = +|q|) + πiRes(q0 = −|q|) =

−πi

2|q|

(

exp (−i|q|(x0 − y0)) − exp (+i|q|(x0 − y0))
)

. (19)

Use this result in Eq. (14) and find

I =
(−πi

2|q|
+ C1

)

exp (−i|q|(x0 − y0))H(y0 − x0)+

(+πi

2|q|
+ C2

)

exp (+i|q|(x0 − y0))H(y0 − x0). (20)

Use x0 − y0 = −(y0 − x0) to rewrite Eq. (20)

I =
(−πi

2|q|
+ C1

)

exp (+i|q|(y0 − x0))H(y0 − x0)+

(+πi

2|q|
+ C2

)

exp (−i|q|(y0 − x0))H(y0 − x0). (21)

The second exponential represents a photon of positive energy traveling

forward in time from x to y. The first term represents a photon of

negative energy traveling forward in time. This is rejected as being

unphysical. We can eliminate the first term by setting C1 equal to

+πi/(2|q|). Thus Eq. (13) becomes

DF (q) = −
[ +1

2|q|

( 1

q0 − q
−πiδ(q0−|q|)

)

−
1

2|q|

( 1

q0 + q
+πiδ(q0+q)

)]

.

(22)
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We will find an alternate form for Eq. (22). Substitute Eq. (22) in

Eq. (14). Integrate and find

I =
(+2πi

2|q|

)

exp (−i|q|(x0 − y0))H(x0 − y0)+

(+2πi

2|q|

)

exp (+i|q|(x0 − y0))H(y0 − x0). (23)

Notice that we can recover this result if we move the pole at q0 = +|q|

below the q0 axis by an amount ε, and if we move the negative pole at

q0 = −|q| above the q0 axis by an amount ε. Thus

DF (q) = −
[ +1

2|q|

( 1

q0 − q + iε

)

−
1

2|q|

( 1

q0 + q − iε

)]

. (24)

Notice that the pole at q0 = |q| − iε is now enclosed by contour C1,

and the pole at q0 = −|q| + iε is now enclosed by contour C2. Thus,

upon performing the integration in Eq. (14),

I = −2πiRes(q0 = |q| − iε) + 2πiRes(q0 = |q| − iε). (25)

This result is identical to Eq. (23) when we let ε → 0 after integration.

We shall often use Eq. (24) for DF (q).

Writing this equation over a common denominator, gives

DF (q) = −
( 1

(q0)2 − |q|2 + iε

)

. (26)
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The theory of generalized functions proves that

1

x ± iε
=

1

x
∓ πiδ(x), (27)

which also establishes the equality of Eq. (22)and Eq. (24).

The photon propagator will be used in the paper on Møller scat-

tering. The same contour integration techniques are used in another

review paper to find the Feynman propagator.


