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ABSTRACT

The electron charge is considered to be distributed or extended in

space. The differential of the electron charge is set equal to a func-

tion of electron charge coordinates multiplied by a four-dimensional

differential volume element. The four-dimensional integral of this

function is required to equal the electron charge in all Lorentz frames.

The probability amplitude for direct extended electron-electron scat-

tering is calculated. The result is that the probability amplitude of

the extended electron theory is a product of the probability ampli-

tude of the point electron theory multiplied by two electron form

factors. Due to the identity of the electrons, a second so-called ”ex-

change” probability amplitude must be calculated. As before, this

probability amplitude in the extended electron theory is a product

of the probability amplitude of the point electron theory multiplied

by two electron form factors. Due to Fermi statistics, the S-matrix

is the difference of the two probability amplitudes .
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I. INTRODUCTION

In the rest frame of an electron charge distribution, let x′µ
r = (x′ 0

r , x′ 1
r , x′ 2

r , x′ 3
r )

denote a spacetime charge point, and let xµ
r = (x0

r, x
1
r , x

2
r, x

3
r) denote

the center of the charge distribution. Sometimes the superscript on the

four-vector (not the components) will be omitted, and we will write

x′
r = (x′ 0

r , x′ 1
r , x′ 2

r , x′ 3
r ) and xr = (x0

r , x
1
r, x

2
r, x

3
r). Introduce x̃r = x′

r −xr

or equivalently x̃µ
r = x′µ

r − xµ
r . In a frame of reference in which the

charge distribution moves with a speed β in the +x3 direction, let

x′
m = (x′ 0

m, x′ 1
m, x′ 2

m, x′ 3
m) denote a spacetime charge point, and let

xm = (x0
m, x1

m, x2
m, x3

m) denote the center of the charge distribution.

Introduce x̃m = x′
m − xm. A Lorentz transformation yields x̃1

r = x̃1
m,

x̃2
r = x̃2

m, x̃3
r = γ(x̃3

m − βx̃0
m), and x̃0

r = γ(x̃0
m − βx̃3

m) where

γ = 1/
√

1 − β2. Denote this Lorentz transformation by x̃µ
r = L(x̃µ

m).

In this paper, the word ”invariant” shall mean a quantity which is

unchanged by a Lorentz transformation. The scalar product of two

four-vectors is invariant. An example is xr · xr = xm · xm. To establish

this equality, use the Lorentz transformation to write xr in terms of xm

on the left hand side.

In the rest frame, the electron charge e is equal to
∫

ρr(x̃r)δ(x̃
0
r)d

4x̃r

where ρr(x̃r) is the charge density in the rest frame and δ denotes
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the delta function.1 In the m frame, the electric charge e is equal to

∫

ρr(L(x̃m))δ[γ(x̃0
m − βx̃3

m)]d4x̃m .2 So an element of charge dem in the

m frame is given by

dem = ρr(Lx̃m))δ[γ(x̃0

m − βx̃3

m)]d4x̃m. (1)

The next section is a review of point electron-electron scattering. As

pointed out in the Abstract, there will be a probability amplitude for

direct scattering, and there will be a probability amplitude for exchange

scattering. The S-matrix is the difference between the two probability

amplitudes. The third section treats extended electron-electron scat-

tering. The result is that each probability amplitude is the probability

amplitude for point electron-electron scattering multiplied by two elec-

tron form factors. The S-matrix of the extended electron theory is

again the the difference between the probability amplitudes for direct

and exchange scattering. A short discussion follows where an estimate

is made of the maximum electron radius and the maximum muon ra-

dius.

II. ELECTRON-ELECTRON SCATTERING
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The calculation for electron-electron scattering will follow the cal-

culation of electron-proton scattering in Bjorken and Drell where the

proton is treated as a point particle of spin 1/2.3 The S-matrix for

electron-proton scattering is

Sfi = −i

∫

d4x φ̄f (x)(eγµ)Aµ(x)φi(x). (2)

With a slight modification, this equation can be used to study electron-

electron scattering since both electrons are treated here as a point

particles of spin 1/2. The initial electron wave function, which has

been normalized to unity in a box of volume V, is approximated by the

plane wave

φi(x) =

√

m

EiV
ui exp (−ipi · x) (3)

where ~ and c have been set equal to 1, m is the electron rest mass, ui

is a four-component spinor, which depends on the initial spin and on

pµ
i = (p0

i = Ei, p
1
i , p

2
i , p

3
i ), the initial four-momentum, and γµ where

µ = 0, 1, 2, 3 are the four Dirac matrices. The final electron wave

function is

φf (x) =

√

m

EfV
uf exp (−ipf · x), (4)
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where pf is the final electron four-momentum, Ef is the final electron

energy, uf is the final electron spinor, and φ̄f = φ†
fγ

0. The vector

potential is given by

Aµ(x) =

∫

d4y DF (x − y)Jµ(y) (5)

where DF (x−y) is the photon propagator, and Jµ(y) is now the second

electron current. The photon propagator is

DF (x − y) =

∫

d4q

(2π)4
exp [−iq · (x− y)]

−1

q2 + iε
(6)

where q is the four-momentum of the photon. The second electron

current is identified as φF (y)eγµ φF (y) where φF (y) is the final elctron

wave function and φI(y) is the initial electron wave function.

The initial second electron wave function is approximated by the

plane wave

φI(y) =

√

m

EIV
uI exp(−ipI · y) (7)

where uI is a four component spinor, which depends on the initial

electron spin and on pµ
I = (p0

I = EI , p
1
I , p

2
I , p

3
I), the initial elctron four-

momentum. The final second electron wave function is
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φF (y) =

√

m

EFV
uF exp(−ipF · y) (8)

where pF is the final electron momentum four-vector, EF is the fi-

nal electron energy, and uF is the final four-component spinor of the

electron. Thus, the probability amplitude for direct electron-electron

scattering is

Sfi1 = −i

∫

d4x d4y φ̄f(x)(eγµ)φi(x)DF (x − y)φ̄F(y)(eγµ)φI(y). (9)

The subscript 1 has been added to Sfi since there are two probability

amplitudes making up the S-matrix. In order to keep track of the

imaginary i’s in more complicated situations, the following convention

will be adopted: each electron charge e is replaced by −ie; and also

DF (x− y) is replaced by iDF (x− y).4 Thus

Sfi1 =

∫

d4x d4y φ̄f (x)(−ieγµ)φi(x)iDF (x− y)φ̄F (y)(−ieγµ)φI(y).

(10)

Substituting Eqs. (3), (4), (6), (7), and (8) into Eq. (9) or (10) yields
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Sfi1 =
+ie2m2(ūfγ

µui)(ūFγµuI)

(2π)4V 2
√

EiEfEIEF

∫

d4x d4y d4q exp[i(pf − pi − q) · x] exp[i(pF − pI + q) · y]

q2 + iε
. (11)

Perform the following integrations:

∫

exp(i(pf − pi − q))d4x = (2π)4δ4(pf − pi − q); (12)

∫

exp(i(pF − pI + q))d4x = (2π)4δ4(pF − pI + q); (13)

∫

δ4(pf − pi − q)δ4(pF − pI + q)
d4q

q2 + iε
=

δ4(pF + pf − pI − pi)

(pf − pi)2
;

(14)

and find

Sfi1 =
+ie2m2

V 2
√

EiEfEIEF

(2π)4δ4(pf + pF − pi − pI)
(ūfγ

µui)(ūFγµuI)

(pf − pi)2
.

(15)

By the delta function in Eq. (12), q = pf − pi.

The S-matrix, Sfi, contains a second probability amplitude, Sfi2,

which has the final wave functions exchanged due to the identity of the

electrons.5 Thus
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Sfi2 =

∫

d4x d4y φ̄F (x)(−ieγµ)φi(x)iDF (x − y)φ̄f(y)(−ieγµ)φI(y).

(16)

Substituting Eqs. (3), (4), (6), (7), and (8) into Eq. (16) yields

Sfi2 =
+ie2m2(ūFγµui)(ūfγµuI)

(2π)4V 2
√

EiEfEIEF

∫

d4x d4y d4q exp[i(pF − pi − q) · x] exp[i(pf − pI + q) · y]

q2 + iε
. (17)

The resulting delta function in the above equation yields q = pF − pi.

Perform the integrations and get

Sfi2 =
+ie2m2

V 2
√

EiEfEIEF

(2π)4δ4(pf + pF − pi − pI)
(ūFγµui)(ūfγµuI)

(pF − pi)2
.

(18)

Due to Fermi statistics, the S-matrix is Sfi = Sfi1 − Sfi2.

III. EXTENDED ELECTRON-ELECTRON SCATTERING

Suppose that the first electron initially moves with a speed β in the

+x3 direction. This is the m frame. Recall that x′
m is a spacetime

electron charge point, xm is the center of the electron and also the
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argument of the wave function. Define x̃m = x′
m − xm. In the rest

frame of the second electron, let y′
r be a spacetime charge point, and

let yr be the center of the electron charge. Introduce ỹr = y′
r − yr.

Take the second electron to be moving with a speed β in the −y3

direction in the m frame. The m frame is now the center of mass

frame. Let y′
m be a spacetime charge point of the second electron. Let

ym be the center of the second electron and the argument of the wave

function. Introduce ỹm = y′
m − ym. A Lorentz transformation yields

ỹ0
r = γ(ỹ0

m + βỹ3
m), ỹ1

r = ỹ1
m, ỹ2

r = ỹ2
m, and ỹ3

r = γ(ỹ3
m + βỹ0

m) where

γ = 1/
√

1 − β2 . Denote this Lorentz transformation by ỹr = L(ỹm).

The interaction takes place at charge points, so replace DF (x − y)

by DF (x′
m − y′

m) in Eq. (9). Let the photon four-momentum vector

now be labeled qm. Also, replace the first electron charge by the four-

dimensional integral of dem1 = ρr(L(x̃m))δ(γ(x̃0
m − βx̃3

m))d4x̃m, and

replace the second electron charge by the four-dimensional integral of

dem2 = ρr(L(ỹm))δ(γ(ỹ0
m + βỹ3

m))d4ỹm. So now the first probability

amplitude SFI1 is

SFI1 =

∫

d4xm d4ym φ̄f(xm)(−iγµ)φi(xm)dem1

iDF (x′
m − y′

m)φ̄F (ym)(−iγµ)φI(ym)dem2. (19)
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Use DF (x′
m − y′

m) = DF (xm − ym) exp(−ix̃m · qm) exp(+iỹm · qm) to

show

SFI1 =

∫

d4xm d4ym φ̄f(xm)(−ieγµ)φi(xm)iDF (xm−ym)φ̄F (ym)(−ieγµ)φI(ym)

∫

exp(−ix̃m · qm)
ρr(L(x̃m))

e
δ(γ(x̃0

m − βx̃3
m))d4x̃m

∫

exp(+iỹ · qm)
ρr(L(ỹm))

e
δ(γ(ỹ0

m + βỹ3

m))d4ỹm . (20)

By the delta function which results when integrating the first integral

above, qm = pf − pi, and by Eqs. (9) and (15), the first integral is Sfi1,

so

SFI1 = Sfi1F1(q)F2(q) (21)

where

F1(q) =

∫

exp(−ix̃m · qm)
ρr(L(x̃m))

e
δ(γ(x̃0

m − βx̃3

m))d4x̃m (22)

is the first electron form factor and

F2(q) =

∫

exp(+iỹm · qm)
ρr(L(ỹm))

e
δ(γ(ỹ0

m + βỹ3

m))d4ỹm (23)

is the second electron form factor. Due to invariance of the form factor,2
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F1(q) =

∫

exp(−ix̃r · qr)
ρr(x̃r)

e
δ(x̃0

r)d
4x̃r (24)

and

F2(q) =

∫

exp(+iỹr · qr)
ρr(ỹr))

e
δ(ỹ0

r)d
4ỹr , (25)

where qr is related to qm by a Lorentz transformation.

To get a rough idea of how size and structure affect scattering, pick

the electron charge to be uniformly distributed on a spherical shell of

radius a in the rest frame. Then the charge densities will be given by

ρr(x̃r) = eδ(|x̃r|−a)/4π a2 and ρr(ỹr) = eδ(|ỹr|−a)/4π a2. The results

are F1(q) = F2(q) = j0(|qr|a) where j0 is the spherical Bessel function

of order zero, and

|qr|
2 = (q1

m)2 + (q2

m)2 + γ2(q3

m − βq0

m)2 =
(pf · pi)

2
− m4

m2
. 2 (26)

For relativistic speeds, the electron mass can be neglected, so Ei = |pi|

and Ef = |pf |. In the center of mass frame, |pf | = |pi|, so Ef = Ei.

Then

|qr|
2 ≈

[EfEi(1 − cos (θ))]
2

m2
=

4E2
fE

2
i sin4 (θ/2)

m2
(27)

Put back ~ and c in Eq. (27), use |pi| ≈ γmc and find
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|qr| ≈
2(mc) sin2 (θ/2)

~(1 − β2)
. (28)

The second probability amplitude, SFI2, is given by

SFI2 =

∫

d4xm d4ym φ̄F (xm)(−iγµ)φi(xm)dem1

iDF (x′
m − y′

m)φ̄f(ym)(−iγµ)φI(ym)dem2 (29)

where the photon momentum four-vector is now written qme. This

equation can be written as

SFI2 =

∫

d4xm d4ym φ̄F (xm)(−ieγµ)φi(xm)iDF (xm−ym)φ̄f (ym)(−ieγµ)φI(ym)

∫

exp(−ix̃m · qme)
ρr(L(x̃m))

e
δ(γ(x̃0

m − βx̃3

m))d4x̃m

∫

exp(+iỹ · qme)
ρr(L(ỹm))

e
δ(γ(ỹ0

m + βỹ3

m))d4ỹm . (30)

By the delta function which results when integrating the first integral

above, qme = pF − pi. Integration leads to

SFI2 = Sfi2F1e(q)F2e(q) . (31)

where
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F1e(q) =

∫

exp(−ix̃m · qme)
ρr(L(x̃m))

e
δ(γ(x̃0

m − βx̃3

m))d4x̃m (32)

and

F2e(q) =

∫

exp(+iỹm · qme)
ρr(L(ỹm))

e
δ(γ(ỹ0

m + βỹ3

m))d4ỹm (33)

Again take electron charge to be distributed uniformly on a spherical

shell of radius a, F1e(q) = F2e(q) = j0(|qre|a). Repeating a previous

calculation,

|qre|
2 = (q1

me)
2 + (q2

me)
2 + γ2(q3

me − βq0

me)
2 =

(pF · pi)
2 −m4

m2
. 2 (34)

Note that |pF | = |pi| = EF = Ei for relativistic speeds in the center

of mass frame. The angle of scattering in the exchange process is

θe = θ + π. Then cos θe = − cos θ, and

|qre|
2 ≈

[EfEi(1 − cos (θe))]
2

m2
=

4E2
fE

2
i cos4 (θ/2)

m2
(35)

Due to Fermi statistics, SFI2 must be subtracted from SFI1 to get

the S-matrix, SFI . Therefore SFI = SFI1 − SFI2.
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IV. DISCUSSION

The S-matrix for electron-electron scattering is the difference of two

probability amplitudes. In the extended electron theory, each of the

point electron probability amplitudes is multiplied by two electron form

factors. A specific electron charge density was chosen just to get an

idea of how electron size and structure affect electron scattering. The

actual charge density should be calculated from the experimentally

determined form factor.

The calculation below is a rough estimate of the maximum electron

radius. The S-matrix for extended electron-electron scattering depends

on powers of j0(|qr|a) and on powers of j0(|qer|a). Neglecting the θ

dependence, |qr| = |qre|. For small argument, each form factor is

approximately 1 − (|qr|a)2/6. The point electron theory of quantum

electrodynamics is a very successful theory. Size effects appear to be

absent in electron-electron scattering. This suggests that (|qr|a)2/6

is too small to be detected experimentally. Assume the undetectable

value of |qr|a to be < .1 . For 40 GeV electrons, 1−β2 ≈ 1 · 10−10, and

β ≈ 1. Then
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|qr| ≈
mc

~(1 − β2)
≈ 1 · 1023 (meters)−1 (36)

If the electron radius a ≈ 1 · 10−24 meters, then |qr|a ≈ .1. This

suggests that the electron radius is less than 1 · 10−24 meters.

Repeat the calculation for the muon using Eq. (36). The muon mass

is about 200 times the electron mass. Take the muon speed to be

.997 times the speed of light. Then, |qr| ≈ 1 · 10+17(meters)−1, so

aµ < 1 · 10−18 meters.
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