
POSITRON SCATTERING BY A COULOMB

POTENTIAL

Abstract

The purpose of this short paper is to show how positrons are treated

in quantum electrodynamics, and to study how positron size affects

scattering. The positron charge is considered to be distributed or ex-

tended in space. The differential of the positron charge is set equal

to a function of positron charge coordinates multiplied by a four-

dimensional differential volume element. The four-dimensional inte-

gral of this function is required to equal the positron charge in all

Lorentz frames. The S-matrix for the scattering of such a positron by

a Coulomb potential is calculated. The result is that the S-matrix of

the extended positron theory is a product of the S-matrix of the point

positron theory multiplied by a positron form factor.

I. INTRODUCTION

In the rest frame of a positron charge distribution, let x′ ν
r = (x′ 0

r , x′ 1
r , x′ 2

r , x′ 3
r )

denote a spacetime charge point, and let xν
r = (x0

r, x
1
r, x

2
r , x

3
r) denote

the center of the charge distribution. Sometimes the superscript will be

omitted, and we will write x′
r = (x′ 0

r , x′ 1
r , x′ 2

r , x′ 3
r ) and xr = (x0

r , x
1
r, x

2
r, x

3
r).

Date: June 11, 2013.
1



2 POSITRON SCATTERING BY A COULOMB POTENTIAL

Introduce x̃r = x′
r−xr or equivalently x̃ν

r = x′ ν
r −xν

r . In a frame of refer-

ence in which the positron charge distribution moves with a speed β in

the +x3 direction, let x′
m = (x′ 0

m, x′ 1
m, x′ 2

m, x′ 3
m) denote a spacetime charge

point, and let xm = (x0
m, x1

m, x2
m, x3

m) denote the center of the charge

distribution. Introduce x̃m = x′
m−xm. A Lorentz transformation yields

x̃1
r = x̃1

m, x̃2
r = x̃2

m, x̃3
r = γ(x̃3

m − βx̃0
m), and x̃0

r = γ(x̃0
m − βx̃3

m) where

γ = 1/
√

1 − β2. Denote this Lorentz transformation by x̃r = L(x̃m).

In the rest frame, the positron charge −e > 0 is equal to
∫

ρr(x̃r)δ(x̃
0
r)d

4x̃r

where ρr(x̃r) is the charge density in the rest frame and δ denotes the

delta function.1 In the m frame, the positron charge −e is equal to

∫

ρr(L(x̃m))δ[γ(x̃0
m − βx̃3

m)]d4x̃m .2 So an element of charge de+
m in the

m frame is given by

de+
m = ρr(L(x̃m))δ[γ(x̃0

m − βx̃3
m)]d4x̃m. (1)

The next section reviews the calculation of the S-matrix for point

positron scattering by a Coulomb potential. In the third section, the

S-matrix for the extended positron in a Coulomb potential is calcu-

lated. The S-matrix of the extended positron theory is found to be the

product of the S-matrix of the point positron theory multiplied by a

positron form factor.
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II. COULOMB SCATTERING OF POSITRONS

The calculation of the S-matrix for the scattering of a positron from

a fixed Coulomb potential will follow Bjorken and Drell.3 For a point

positron, the S-matrix element is

Sfi = +i

∫

d4x φ̄F (x)(eγ0)A0(x)φI(x). (2)

Let pI = (EI , p
1
I , p

2
I , p

3
I) denote the initial positron four-momentum

vector, and let pF = (EF , p1
F , p2

F , p3
F ) denote the final positron four-

momentum vector. It is common to treat the positive energy positron,

which propagates forward in time, as a negative energy electron, which

propagates backward in time.4 Thus the negative energy electron prop-

agates from the future into the past. To accommodate this, the initial

four-momentum of the electron is identified as −pF = (−EF ,−pF ),

and the final four-momentum of the electron is identified as −pI =

(−EI ,−pI). For the electron moving backward in time, notice that

the S-matrix element has a +i in front of the integral.5 The initial

electron plane wave function, which has been normalized to unity in a

box of volume V, now is

φI(x) =

√

m

EF V
vF exp (+ipF · x), (3)
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and the final electron plane wave function is

φF (x) =

√

m

EIV
vI exp (+ipI · x) (4)

Here ~ and c are set equal to 1, m is the positron mass, vF is a one

by four column matrix, which depends on the final positron spin and

on the final positron four-momentum, and vI is a one by four column

matrix, which depends on the initial positron spin and on the initial

four-momentum. The four by four Dirac matrix γ0 =









1 0

0 −1









. Each

entry in γ0 is actually a two by two matrix.Also φ̄F = φ†
Fγ0.

For a point charge −Ze > 0, the Coulomb potential is A0(x) =

−Ze/4π|x|. Here x = (x1, x2, x3), so |x| =
√

(x1)2 + (x2)2 + (x3)2.

Then

Sfi = − iZe2m

V
√

EIEF

v̄Iγ
0vF

∫

exp [i(pF − pI) · x]d4x

4π|x| . (5)

Let q = pF − pI . Write exp (iq · x) = exp [i(q0x0 − q · x)]. Perform the

following integrations:

∫

exp (iq0x0)dx0 = 2πδ(q0) = 2πδ(EF − EI); (6)

∫

exp (−iq · x)

|x| d3x =
4π

|q|2 =
4π

|pF − pI |2
; (7)
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and find

Sfi = − iZe2m

V
√

EIEF

v̄Iγ
0vF

|q|2 2πδ(EF − EI). (8)

The integral performed in Eq. (7) is the Fourier transform of a gener-

alized function.6

III. COULOMB SCATTERING OF EXTENDED POSITRONS

In the previous section, x was the argument of the wave function

and the negative energy electron charge spacetime point in an arbitrary

Lorentz frame. In this section, take the positron to be moving in the

+x3 direction with a speed β. This frame was previously defined to be

the m frame. So now xm is the argument of the wave function, and it

is also the center of the positron charge distribution.

Eq. (2) will be modified to take into account the spatial distribution

of the electron charge. The interaction takes place at the charge points

x′
m, so A0(x) is replaced by

A0(x
′
m) =

−Ze

4π|x′
m|

. (9)

The negative energy electron moving backward in time has a speed

β in the −x3 direction. A Lorentz transformation to the rest frame

of the negative energy electron is denoted by x̃re = L−(x̃m). Let ρr
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be the charge density of the electron in the rest frame. The negative

energy electron charge is replaced by the four-dimensional integral of

ρr(L
−(x̃m))δ[γ(x̃0

m + βx̃3
m)]d4xm. Making these substitutions in Equa-

tion (2), the S matrix for the extended positron is

SFI = +i

∫

d4xm φ̄F (xm)ρr(L
−(x̃m))δ[γ(x̃0

m+βx̃3
m)]d4x̃m (γ0)

−Ze

(4π|x′
m|)

φI(xm).

(10)

The S-matrix becomes

SFI = − iZem

V
√

EIEF

v̄Iγ
0vF

∫

d4xm exp [i(pF − pI) · xm]

4π|x′
m|

ρr(L
−(x̃m))δ[γ(x̃0

m + βx̃3

m)]d4x̃m. (11)

Change variables from xm to x′
m = xm + x̃m. Since pF and pI are now

measured in the m frame, set qm = pF − pI .

SFI = − iZem

V
√

EiEf

v̄Iγ
0vF

∫

exp (+iqm · x′
m)d4x′

m

4π|x′
m|

∫

exp (−iqm · x̃m)ρr(L
−(x̃m))δ[γ(x̃0

m + β x̃3

m]d4x̃m. (12)

By Eqns, (6) and (7)

SFI = SfiF (q) (13)
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where F (q), the positron form factor, is given by

F (q) =
1

e

∫

exp (−iqm · x̃m)ρr(L
−(x̃m))δ[γi(x̃

0

m + βi x̃
3

m]d4x̃m. (14)

The following result has been established in reference 2

F (q) =
1

e

∫

exp (−iqr · x̃re)ρr(x̃re))δ(x
0

re)d
4x̃re (15)

where qr = L(q) = (γ(q0 − βq3), q1, q2, γ(q3 − βq0)) is the q four-vector

in the rest frame.

To get a rough idea of how size affects scattering, assume the electron

charge is uniformly distributed on a spherical shell of radius a in the

rest frame. Then

ρr(x̃r) =
e

4πa2
δ(

√

(x̃1
r)

2 + (x̃2
r)

2 + (x̃3
r)

2 − a), (16)

and F (q) = j0(|qr|a) where j0 is the spherical Bessel function of order

zero, and

|qr|2 = (p1

F )2 + (p2

F )2 + γ2(p3

F − p3

I − β(p0

F − p0

I))
2 =

(pF · pI)
2 − m4

m2
=

4|p2
I | sin2 (θ/2)(1 − β2 cos2 (θ/2))

(1 − β2)
. (17)
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