
COMPTON SCATTERING

ABSTRACT

The electron charge is considered to be distributed or extended in space.

The differential of the electron charge is set equal to a function of electron

charge coordinates multiplied by a four-dimensional differential volume ele-

ment. The four-dimensional integral of this function is required to equal the

electron charge in all Lorentz frames. The S-matrix for Compton scattering

is the sum of two probability amplitudes. In the extended electron theory,

each probability amplitude is the product of the probability amplitude for

point electron scattering multiplied by two electron form factors.

I. SUMMARY

The next section calculates the S-matrix for Compton scattering

of a point electron. An alternative calculation of the S-matrix for

the Compton scattering of a point electron is carried out in the third

section. The coordinates for the extended electron are introduced in

the fourth section. In the fifth section, the S-matrix for Compton

scattering of an extended electron is calculated. A short discussion

follows.
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II. COMPTON SCATTERING

The calculation of Compton scattering will follow Bjorken and Drell.1

The probability amplitude for an electron to absorb a photon at space-

time point y, propagate to spacetime point x, and emit a photon is

Sfi1 =

∫

d4xd4yφ̄f(x)(−ie /A(q′, x))iSF(x − y)(−ie /A(q, y))φi(y). (1)

As is customary, ~ and c are set equal to one. The initial approximate

electron wave function, which has been normalized to unity in a box of

volume V, is

φi(y) =

√

m

EiV
ui exp (−ipi · y) (2)

where m is the electron mass, Ei is the initial energy, pi is the initial

momentum four-vector, and ui is a one by four matrix, which depends

on the initial momentum and the initial spin. The final electron wave

function is

φf(x) =

√

m

EfV
uf exp (−ipf · x) (3)
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where Ef is the final energy, pf is the final momentum four-vector, and

uf is a one by four matrix, which depends on the final momentum and

the final spin. The vector potential for the absorbed photon is

A(q, y) = ε
√

1/(2q0V ) exp (−iq · y) (4)

where ε is the polarization vector, q = (q0, q1, q2, q3) is the four-momentum

of the absorbed photon, /A(q, y) = γν Aν(q, y), and /ε = γν εν. Here γν

are the four Dirac matrices where (ν = 0, 1, 2, 3). The vector potential

of the emitted photon is

A(q′, x) = ε′
√

1/(2q′ 0V ) exp (+iq′ · x) (5)

where ε′ is its polarization vector, q′ is the four-momentum of the emit-

ted photon, /A(q′, x) = γµ Aµ(q
′, x), and /ε′ = γµ ε′µ. The Feynman prop-

agator is

SF (x − y) =

∫

exp (−ik · (x − y))SF (k)
d4k

(2π)4
(6)

where

SF (k) =
/k + m

k2 −m2 + iε
, (7)
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and k is the four-momentum of the electron as it propagates from y to

x, and /k = γµkµ.

Substitution of Eqs. (2), (3), (4), (5), (6), and (7) into Eq. (1) leads

to

Sfi1 =
−ime2

2V 2
√

EiEf q0 q′0

∫

d4x d4y exp (ix · (pf + q′ − k))

exp[i(k − q − pi) · y]
ūf/ε

′(/k + m)/εui

k2 − m2 + iε

d4k

(2π)4
. (8)

After integration over x and y,

Sfi1 =
−ime2

2V 2
√

EiEf q0 q′0

∫

(2π)4δ4(pf + q′ − k)

(2π)4δ4(k − q − pi)
ūf/ε

′(/k + m)/εui

k2 − m2 + iε

d4k

(2π)4
. (9)

Integration over k yields

Sfi1 =
−ie2m(2π)4δ4(pf + q′ − pi − q)

2V 2
√

EiEfq0q′0

ūf /ε′(/pi
+ /q + m)/εui

2pi · q
. (10)

There is a second probability amplitude, Sfi2, where the electron at

point y emits the photon of four-momentum q′, propagates to point x

where it absorbs the photon of four-momentum q. The S-matrix for

this process is
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Sfi2 =

∫

d4x d4y φ̄f (x)(−ie /A(q, x))iSF(x − y)(−ie /A(q′, y))φi(y).

(11)

Substitution into Eqs. (11) yields

Sfi2 =
−ime2

2V 2
√

EiEf q0 q′ 0

∫

d4x d4y exp (ix · (pf − q − k))

exp[i(k + q′ − pi) · y]
ūf/ε(/k + m)/ε

′ui

k2 − m2 + iε

d4k

(2π)4
. (12)

After integration over x and y,

Sfi2 =
−ime2

2V 2
√

EiEf q0 q′ 0

∫

(2π)4δ4(pf − q − k)

(2π)4δ4(k + q′ − pi)
ūf/ε(k + m)/ε

′ui

k2 − m2 + iε

d4k

(2π)4
. (13)

Integration over k yields

Sfi2 =
−ie2m(2π)4δ4(pf + q′ − pi − q)

2V 2
√

EiEfq0q′0

ūf/ε(/pi
− /q

′ + m)/ε′ui

−2pi · q′
. (14)

The S matrix is Sfi = Sfi1 + Sfi2.
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III. ALTERNATE CALCULATION

In the previous section, integrals of Eqs. (8) and (12) were done over

the four components of x and y before integrating over k. The four

dimensional integral over components of k should be done first to yield

SF (x−y). The result is something rather unwieldy.2, so we will instead

integrate first over the zeroth component of k followed by integrals over

the zeroth component of x and then over the zeroth component of y.

Introduce

IS =

∫

dk0

(2π)4
exp (−ik0(x0 − y0))

(/k + m)

2
√

|k|2 + m2

( 1

k0 −
√

|k|2 + m2 + iε
−

1

k0 +
√

|k|2 + m2 − iε

)

(15)

Use contour integration to show

IS = −iH(x0−y0) exp [−i
√

|k|2 + m2(x0 − y0)]
(γ0

√

|k|2 + m2) + γjkj + m)

2
√

|k|2 + m2

−iH(y0−x0) exp [+i
√

|k|2 + m2(x0 − y0)]
(−γ0

√

|k|2 + m2) + γjkj + m)

2
√

|k|2 + m2
.

(16)

where j = 1, 2, 3 and H(x) is the unit step function. Introduce
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I1 =

∫

H(x0−y0) exp [−i
√

|k|2 + m2(x0 − y0)+i(p0

f+q′0)x0−i(p0

i +q0)y0]dx0dy0,

(17)

and introduce

I2 =

∫

H(y0−x0) exp [+i
√

|k|2 + m2(x0 − y0)+i(p0

f+q′0)x0−i(p0

i +q0)y0]dx0dy0,

(18)

To integrate I1, set z0 = x0 − y0. Then

I1 =

∫

H(z0) exp [−i
√

|k|2 + m2(z0)+i(p0

f+q′0)(z0+y0)−i(p0

i +q0)y0]dz0dy0

= −2πiδ(p0

f + q′0 − p0

i − q0)

( 1
√

|k|2 + m2 − p0

f − q′0
+ πiδ(

√

|k|2 + m2 − p0

f − q′0)
)

(19)

where the integral over y0 gives the delta function, and the integral

over z0 is the Fourier transform of a generalized function.3 By Eq. (21),

k = pf + q′. Set the argument of the delta function equal to zero, and

arrive at a contradiction. Thus the delta function vanishes since its

argument is not zero.

To integrate I2, set z0 = y0 − x0. Then
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I2 =

∫

H(z0) exp [+i
√

|k|2 + m2(z0)+i(p0

f+q′0)(x0)−i(p0

i +q0)(z0+x0)]dz0dx0

= −2πiδ(p0

f + q′0 − p0

i − q0)

( 1
√

|k|2 + m2 + p0

i + q0
+ πiδ(

√

|k|2 + m2 + p0

i + q0)
)

. (20)

By Eq. (21), k = pi + q. Set the argument of the delta function equal

to zero, and arrive at a contradiction. Thus the delta function vanishes

since its argument is not zero. Note that

∫

d3x d3y exp [−ix · (pf + q′ − k)] exp [+iy · (pi + q − k)]

= (2π)3δ3(pf + q′ − k)(2π)3δ3(−pi − q + k). (21)

Putting these results together yields Eq. (10).

Follow the same order of integration for Sfi2, which is given by

Eq. (11), and recover Eq. (14).

This suggests, but does not prove that the multiple integrals done in

any order in the Compton scattering S-matix calculation will give the

correct result.
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IV. EXTENDED ELECTRON COORDINATES

Pick the electron to be initially at rest. Let y′

r = (y0

r , y
1

r , y
2

r , y
3

r)

denote a spacetime electron charge point. Let the spacetime point

yr = (y0

r , y
1

r , y
2

r , y
3

r ) denote the argument of the wave function and the

center of the electron charge distribution. Define ỹr = y′

r − yr. In the

rest frame, the electron charge e is equal to
∫

ρr(ỹr)δ(ỹ
0

r)d
4ỹr where

ρr(ỹr) is the charge density in the rest frame and δ denotes the delta

function.4 So an element of charge in the rest frame is given by

der = ρr(ỹr)δ(ỹ
0

r) d4ỹr. (22)

Take the photon, which has four-momentum q, to be initially moving

in the +y3 direction. The photon is absorbed at an electron charge

point y′

r. The electron now propagates in the +y3 direction with a

speed β. The electron then emits a photon of four-momentum q′ from

the moving spacetime charge point x′

m = (x′ 0

m, x′ 1

m, x′ 2

m, x′ 3

m). Denote the

center of the electron charge distribution and the argument of the wave

function by xm = (x0

m, x1

m, x2

m, x3

m). Introduce x̃m = x′

m − xm.

Transform from the m frame to the rest frame where x′

r = (x′ 0

r , x′ 1

r , x′ 2

r , x′ 3

r )

denotes a spacetime charge point of the electron charge distribution,

and xr = (x0

r, x
1

r, x
2

r , x
3

r) denotes the center of the charge distribu-

tion. The charge distribution of the electron is assumed to have a
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well-defined center, which is identified as the argument of the wave

function. The shape of the charge distribution depends on the motion

of the charge, and is assumed to be unaffected by any interaction. In-

troduce x̃ = x′−x. A Lorentz transformation yields x̃1

r = x̃1

m, x̃2

r = x̃2

m,

x̃3

r = γ(x̃3

m − βx̃0

m), and x̃0

r = γ(x̃0

m − βx̃3

m) where γ = 1/
√

1 − β2. In

the m frame, the electron charge 5 will be denoted by dem where

e =

∫

dem =

∫

ρr(x̃m) δ[γ(x̃0

m − βx̃3

m)] d4x̃m (23)

V. COMPTON SCATTERING OF EXTENDED ELECTRONS

Replace the electron charge of the electron at rest by the four-

dimensional volume integral of der. Replace the electron charge of

the moving electron by the four-dimensional volume integral of dem.

Since the photon is emitted and absorbed at a charge point, replace

Aν(q, y) by Aν(q, y
′

r), and replace Aµ(q
′, x) by Aµ(q

′, x′

m) in the first

probability amplitude. Then,
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SFI1 =

∫

d4xm d4yr φ̄f (xm)(−ie /A(q′, x′

m))
dem

e

iSF (xm − yr)(−ie /A(q, y′

r))
der

e
φi(yr) =

− ie2

∫

d4xm d4yr φ̄f(xm) /A(q′, xm)SF (xm − yr) /A(q, y′

r)φi(yr)

∫

exp (iq′ · x̃m)
dem

e

∫

exp (−iq · ỹr)
der

e
. (24)

The first integral is identified as the first probability amplitude for

point electron Compton scattering (see Eq. (1)), so

SFI1 = Sfi1Fm(q′)Fr(q). (25)

The spacetime points x and y in Eq. (1) refer to an arbitrary frame

of reference, which includes the frame of reference used in this section.

By Eq. (22)

Fr(q) =

∫

exp (iq · ỹr)
der

e
=

∫

exp (iq · ỹr)
ρr(ỹr)

e
δ(ỹ0

r) d4ỹr . (26)

By invariance of the form factor
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Fm(q′) =

∫

exp (iq′ · x̃m)
dem

e
=

∫

exp (iq′r · x̃r)
der

e
=

∫

exp (iq′r · x̃r)
ρr(x̃r)

e
δ(x̃0

r) d4x̃r . (27)

where q′0r = γ1(q
′0 + β1q

′3), q′1r = q′1, q′2r = q′2, and q′3r = γ1(q
′3 + β1q

′0)

and γ1 = 1/
√

1 − β2

1
. Notice that β1, the speed at which the electron

propagates between y and x, appears. The propagator speed is |k|/k0.

It is now important to integrate over k first. The incorrect propagator

speed is calculated by integrating over x and y before integrating over

k. So integrate over k0 first and find that the propagator speed β1

is |k|/
√

|k|2 + m2. Then the correct propagator speed is identified as

|q|/
√

|q|2 + m2 since k = q when the electron is initially at rest.

The second probability amplitude is given by

SFI2 =

∫

d4xm d4yr φ̄f (xm)(−ie /A(q, x′

m))
dem

e

iSF (xm − yr)(−ie /A(q′, y′

r))
der

e
φi(yr) =

− ie2

∫

d4xm d4yr φ̄f(xm) /A(q, xm)SF (xm − yr) /A(q′, yr)φi(yr)

∫

exp (iq · x̃m)
dem

e

∫

exp (−iq · ỹr)
der

e
. (28)



COMPTON SCATTERING 13

The first integral is identified as the second probability amplitude for

point electron Compton scattering (see Eq. (11)), so

SFI2 = Sfi2Fm(q)Fr(q
′) (29)

where

Fr(q
′) =

∫

exp (iq′ · ỹr)
der

e
=

∫

exp (iq′ · ỹr)ρr(ỹr)δ(ỹ
0

r) d4ỹr . (30)

It is convenient to pick q′ to be in x3 direction. Then by invariance of

the form factor,

Fm(q) =

∫

exp (iq · x̃m)
dem

e
=

∫

exp (iqr · x̃r)
der

e
=

∫

exp (iqr · x̃r)
ρr(x̃r)

e
δ(x̃0

r) d4x̃r . (31)

where q0

r = γ2(q
0 − β2q

3), q1

r = q1, q2

r = q2, and q3

r = γ2(q
3 − β2q

0)

and γ2 = 1/
√

1 − β2

2
. Notice that β2, the speed at which the electron

propagates between y and x, appears. The propagator speed is |k|/k0.

Again it is now important to integrate over k0 first. The incorrect

propagator speed is calculated by integrating over x and y before inte-

grating over k. The correct propagator speed is |q′|/
√

|q′|2 + m2 since

k = −q′.
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VI. DISCUSSION

Since the propagator speed enters the extended electron theory, it is

important to integrate over k0 first. Integration over x and y before

integrating over k leads to an incorrect propagator speed.

The S-matrix for Compton scattering contains two probability am-

plitudes. In the extended electron theory, each probability amplitude

is the probability amplitude for the point electron Compton scattering,

times two electron form factors. These electron form factors should be

determined from experiment.
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