
FINITE SELF MASS OF THE ELECTRON

ABSTRACT

The self-mass of an electron is found to be finite when the electron charge

is considered to be distributed or extended in space. The differential of

the electron charge is set equal to a function of electron charge coordinates

multiplied by a four-dimensional differential volume element. The four-

dimensional integral of this function is required to equal the electron charge

in all Lorentz frames.

I. LOGARITHMIC DIVERGENCE OF THE SELF-MASS

The electron self-mass is associated with the following sequence of

events: a point electron propagates from spacetime point y to space-

time point w where it emits a photon, the electron then propagates to

spacetime point z where it absorbs the same photon, and finally the

electron then propagates to spacetime point x. The propagator for this

process, which is second order in the charge e,1 is

SF2(x − y) =

∫

SF (x − z)(−ieγµ)SF (z − w)(−ieγµ)

SF (w − y)DF (z − w)d4z d4w (1)
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where γµ and γµ (µ = 0, 1, 2, 3) both represent the Dirac matrices. The

electron propagators, SF (x− z), SF (z−w), and SF (w− y), are written

as Fourier integrals:

SF (x − z) =

∫

exp (−ip′ · (x − z))SF (p′)
d4p′

(2π)4
, (2)

SF (z − w) =

∫

exp (−ik · (z − w))SF (k)
d4k

(2π)4
, (3)

and

SF (w − y) =

∫

exp (−ip · (w − y))SF (p)
d4p

(2π)4
, (4)

where by choice

SF (p′) =
i

/p
′ − m0

=
i(/p

′ + m0)

p′2 −m2
0

, (5)

SF (p) =
i

/p − m0
=

i(/p + m0)

p2 − m2
0

, (6)

and

SF (k) =
i(/k + m0)

k2 − m2
0 + iε

. (7)

Here p, p′, and k are four-momentum vectors, /p′ = γµp′µ, /p = γµpµ,

/k = γµkµ, and m0 is called the bare electron mass. The observable or

physical mass is given by m = m0 +δm where δm is the self-mass. The

photon propagator is given by

DF (z − w) = −i

∫

d4q

(2π)4

exp (−iq · (z − w))
(

q2 − µ2 + iε
) (8)
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where q is a four-momentum vector, and µ is a small photon mass,

which is inserted in the photon propagator to eliminate the infra-red

divergence. Then Eq. (1) becomes

SF2(x − y) =

∫

d4p′

(2π)4
exp (−ip′ · (x − z))

i(/p
′ + m0)

(p′2 − m2
0)

(−ieγµ)i(/k + m0)(−ieγµ)

k2 − m2
0 + iε

exp (−ik · (z − w))
d4k

(2π)4

(−i)
d4q

(2π)4

exp (−iq · (z − w))

q2 − µ2 + iε
d4z d4w

exp (−ip · (w − y))
i(/p + m0)

(p2 − m2
0)

d4p

(2π)4
. (9)

Note that γµ(/k + m0)γµ = −2/k + 4m0. Rearrange the terms to get

SF2(x − y) = (−ie)2i(−i)

∫

d4p′

(2π)4
exp (−ip′ · x))

i(/p
′ + m0)

(p′2 − m2
0)

(−2/k + 4m0)

k2 − m2
0 + iε

d4k

(2π)4

d4q

(2π)4

1

q2 − µ2 + iε
d4z exp (iz · (−k − q + p′))

d4w exp(iw · (+k + q − p)) exp(+ip · y)
i(/p + m0)

(p2 − m2
0)

d4p

(2π)4
. (10)

Note that

∫

d4z exp (iz · (−k − q + p′)) d4w exp(iw · (+k + q − p)) =

(2π)4δ4(−k − q + p′)(2π)4δ(k + q − p) =

(2π)4δ4(p′ − p) (2π)4δ4(k + q − p). (11)
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Substitute Eq. (11) into Eq. (10), and find

SF2(x − y) = −e2

∫

d4p′

(2π)4
exp (−ip′ · x))

i(/p
′ + m0)

(p′2 − m2
0)

(2π)4δ4(p′ − p)

(−2/k + 4m0)

k2 − m2
0 + iε

d4k

(2π)4

d4q

(2π)4

1

q2 − µ2 + iε

(2π)4δ4(k + q − p) exp (+ip · y)
i(/p + m0)

(p2 − m2
0)

d4p

(2π)4
. (12)

Perform the integration over the four components of p′ and the four

components of k, and find

SF2(x − y) = −e2

∫

exp (−ip · x))
i(/p + m0)

(p2 − m2
0)

(−2/p + 2/q + 4m0)

(p − q)2 −m2
0 + iε

d4q

(2π)4

1

q2 − µ2 + iε
exp (+ip · y)

i(/p + m0)

(p2 − m2
0)

d4p

(2π)4
. (13)

Write Eq. (13) in the form

SF2(x − y) =

∫

exp (−ip · x))
i(/p + m0)

(p2 −m2
0)

(−iΣ2(p))

exp (+ip · y)
i(/p + m0)

(p2 − m2
0)

d4p

(2π)4
(14)

where Σ2(p) is given by

Σ2(p) = −ie2

∫

( −2/p + 2/q + 4m0

(p − q)2 − m2
0 + iε

) 1

q2 − µ2 + iε

d4q

(2π)4
. (15)
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Σ2(/p = m0) is identified approximately as the self-mass.1 Feynman’s

method of integration is to use

1

AB
=

∫ 1

0

dt

[B + (A − B)t]2
. (16)

Set A = q2 − 2q · p + p2 −m2
0 + iε, and set B = q2 − µ2 + iε. Then

Σ2(p) = −ie2

∫ 1

0

dt

∫ −2/p + 2/q + 4m0

[(q − pt)2 − p2t2 + (p2 − m2
0)t − µ2(1 − t) + iε]2

d4q

(2π)4
.

(17)

Change variables to ` = q − pt, and get

Σ2(p) = −ie2

∫ 1

0

dt

∫ −2/p + 2/̀ + 2/pt + 4m0

[(`)2 − p2t2 + (p2 − m2
0)t− µ2(1 − t) + iε]2

d4`

(2π)4
.

(18)

The term linear in ` in the numerator integrates to zero. Note that if

/p = m0, then p2 = m2
0, and

Σ2(/p = m0) = −ie2

∫ 1

0

dt

∫

+2m0(1 + t)

[(`0)2 − (~̀2 + m2
0t

2 + µ2(1 − t)) + iε]2
d4`

(2π)4
.

(19)

Introduce ∆ = +m2
0t

2 + µ2(1 − t). Then

Σ2(/p = m0) = −ie2

∫ 1

0

dt

∫

2m0(1 + t)

[(`0) −
√

(~̀2 + ∆ + iε]2 [(`0) +

√

(~̀2 + ∆ − iε]2

d4`

(2π)4
.

(20)

Introduce

IS =

∫

1

[(`0) −
√

(~̀2 + ∆ + iε]2 [(`0) +

√

(~̀2 + ∆ − iε]2

d`0

(2π)
. (21)
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Notice the integrand has two double poles. Integrate from −∞ to +∞

along the real `0 axis. Complete the contour on the infinite semi-circle

below the `0 axis. The residue of the pole at `0 =

√

(~̀) 2 + ∆ − iε is

given by

∂

∂`0

( 1

`0 +

√

(~̀) 2 + ∆ + iε)

)2

|
`0=

√
(~̀) 2+∆+iε

=
−1

4(~̀2 + ∆)3/2
. (22)

Then

Σ2(/p = m0) = −ie2 (−2πi)

(2π)

∫ 1

0

dt

∫ −2m0(1 + t)

4(~̀2 + ∆)3/2

d3`

(2π)3
. (23)

For large |~̀|, Σ2(/p = m0) →
∫

|~̀|2d|~̀|/|~̀|3 → log |~̀| as |~̀| → ∞. Thus

the self-mass diverges logarithmically.

II. EXTENDED ELECTRON COORDINATES

In the rest frame of an electron charge distribution, let x′µ
r = (x′ 0

r , x′ 1
r , x′ 2

r , x′ 3
r )

denote a spacetime charge point. Let xµ
r = (x0

r, x
1
r, x

2
r , x

3
r) denote the

center of the charge distribution. The charge distribution of the elec-

tron is assumed to have a well-defined center, which is identified as the

argument of the wave function. The shape of the charge distribution

depends on the motion of the charge, and is assumed to be unaffected

by any interaction. Sometimes the superscript will be omitted, and we

will write x′

r = (x′ 0
r , x′ 1

r , x′ 2
r , x′ 3

r ) and xr = (x0
r , x

1
r, x

2
r, x

3
r). Introduce

x̃r = x′

r − xr or equivalently x̃µ
r = x′µ

r − xµ
r .
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In the rest frame, the electron charge e is equal to
∫

ρr(x̃r)δ(x̃
0
r)d

4x̃r

where ρr(x̃r) is the charge density in the rest frame.2,3 So an element

of charge in the rest frame is given by

de(x̃r) = ρr(x̃r)δ(x̃
0
r) d4x̃r. (24)

III. FINITE SELF-MASS OF THE EXTENDED ELECTRON

To take into account electron size at emission and at absorption

replace the first e by the four-dimensional integral of de(z̃) and replace

the second e by the four-dimensional integral of de(w̃). In addition,

replace DF (z − w) by DF (z′ − w′). Then Eq. (1) is replaced by

S ′

F2(x − y) =

∫

SF (x − z)(−ide(z̃)γµ)SF (z − w)(−ide(w̃)γµ)

SF (w − y)DF (z′ − w′)d4z d4w (25)

Use DF (z′ − w′) = DF (z − w) exp (−iq · z̃) exp (+iq · w̃) and find

S ′

F2(x − y) =

∫

SF (x − z)(−ieγµ)SF (z − w)(−ieγµ)SF (w − y)

DF (z − w)d4z d4w exp (−iq · z̃)
de(z̃)

e
exp (+iq · w̃)

de(w̃)

e
(26)

It is convenient to continue the calculation in the frame in which the

electron is initially at rest. The motion of the electron should not be

changed by the emission of photons in all directions, or by the absorp-

tion of these photons, so it is assumed that the electron remains at
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rest. Then de(z̃) and de(w̃) have the form of Eq. (24). For the purpose

of illustration, choose the electron charge to be uniformly distributed

on a spherical shell of radius a, so

ρr(w̃r) = e
δ(

√

(w̃1
r)

2 + (w̃2
r)

2 + (w̃3
r)

2 − a)

4πa2
= e

δ(|w̃r| − a)

4πa2
(27)

with a similar equation for ρr(z̃r). So Fi(q), one electron form factor,

is

Fi(q) =

∫

exp (+iq · w̃r)
de(w̃r)

e
=

∫

exp (−iq · w̃r)
δ(|w̃r| − a)

4πa2
d3w̃r =

sin (|q|a)

(|q|a)
= j0(|q|a), (28)

and the other electron form factor is

Ff (q) =

∫

exp (−iq · z̃r)
de(z̃r)

e
=

∫

exp (+iq · z̃r)
δ(|z̃r| − a)

4πa2
d3z̃r =

sin (|q|a)

(|q|a)
= j0(|q|a) (29)

where j0 is the spherical Bessl function of order zero. Thus in the rest

frame of the electron,

S ′

F2(x − y) =

∫

SF (x − z)(−ieγµ)SF (z − w)(−ieγµ)SF (w − y)

DF (z −w)d4z d4w j2
0(|q|a) (30)
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Proceed as in section I, and find that Eq. (23) is replaced by

Σ′

2(/p = m0,p = 0) = +ie2 (−2πi)

(2π)

∫ 1

0

dt

∫

2m0(1 + t)

4(~̀2 + ∆)3/2

d3`

(2π)3
j2
0(|~̀|a),

(31)

which is approximately the self-mass of the extended electron. Take

the absolute value of the integrand, and observe that for large |~̀|

integral →
∫ |~̀|2d|~̀|

(|~̀|2 + ∆)3/2

1

|~̀|2
→

∫

d|~̀|
|~̀|3

. (32)

Thus the integral converges absolutely, so the self-mass for the chosen

charge distribution is finite. Incidentally Eq. (31) can be integrated

exactly in terms of modified Bessel functions. This is done in the

appendix.

IV. AN ALTERNATIVE ELECTRON CHARGE DISTRIBUTION

Consider the electron charge uniformly distributed over a sphere of

radius a in the rest frame. Then

ρr(w̃r) = 3e
H(a −

√

(w̃1
r)

2 + (w̃2
r)

2 + (w̃3
r)

2 )

4πa3
= 3e

H(a − |w̃r|)
4πa3

(33)

Then the electron form factor takes the form

Fi(q) =

∫

exp (+iq · w̃r)
de(w̃r)

e
=

∫

exp (−iq · w̃r)
3H(a − |w̃r|)

4πa3
d3w̃r =

3

(|q|a)3
(sin(|q|a)− (|q|a) cos (|q|a)) =

3

(|q|a)
j1(|q|a), (34)
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where j1 is the spherical Bessel function of order one. Note that

Ff(q) =

∫

exp (−iq · z̃r)
de(z̃r)

e
=

3

(|q|a)
j1(|q|a). (35)

Take the absolute value of the integrand, and observe that for large |~̀|

integral →
∫ |~̀|2d|~̀|

(|~̀|2 + ∆)3/2

1

|~̀|4
→

∫

d|~̀|
|~̀|5

. (36)

Thus the integral converges absolutely, so the self-mass for this charge

distribution is finite.

V. DISCUSSION

The calculations in the previous two sections suggest, but do not

prove, that for a finite distribution of charge, the self-mass is finite.

APPENDIX

Eq. (31) can be written as

Σ′

2(/p = m0,p = 0) = +ie2 (−2πi)

(2π)

∫ 1

0

dt

∫

2m0(1 + t)

4(~̀2 + ∆)3/2

d3`

(2π)3

exp (2i|~̀|a) + exp (−2i|~̀|a)− 2

(2i|~̀|a)2
. (37)

Note that d3` = |~̀|2 dΩ d|~̀|, and the integral of dΩ is 4π. Also,

∫

∞

0

exp (2i|~̀|a)d|~̀|
(|~̀|2 + ∆)3

=

∫

−∞

0

exp (−2i|~̀|a)(−d|~̀|)
(|~̀|2 + ∆)3

=

∫ 0

−∞

exp (−2i|~̀|a)d|~̀|
(|~̀|2 + ∆)3

.

(38)
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Then

Σ′

2(/p = m0,p = 0) = −e2m0

8a2

(8π)

(2π)3

∫ 1

0

(1 + t)dt(I1 + I2). (39)

where

I2 = −2

∫ +∞

0

d|~̀|
(~̀2 + ∆)3/2

= −2/∆, (40)

and

I1 =

∫ +∞

−∞

exp (−2i|~̀|a) d|~̀|
(~̀2 + ∆)3/2

. (41)

The substitutions |~̀| = ∆1/2|~̀′|, and ζ = 2∆1/2a yield 4

I1 =

∫ +∞

−∞

exp (−2i|~̀|a) d|~̀|
(~̀2 + ∆)3/2

=

∫ +∞

−∞

exp (−iζ|~̀′|) d|~̀′|
∆(~̀′ 2 + 1)3/2

=

√
π|ζ|K1(|ζ|)
∆(1/2)!20

.

(42)

where (1/2)! =
√

π/2,5 and K1(ζ) is the modified Bessel function of

order 1. The argument of K1 is small, so the first few terms of a Taylor

series will be used to approximate K1. Note that

K1(x) =
π i2

2
H

(1)
1 (ix) = −π

2
[J1(ix) + iN1(ix)] (43)

where H
(1)
1 is a Hankel function, J1 is a Bessel function of order 1, and

N1 is a Neumann function of order 1. Keep the first few terms in the

series expansion(small argument),6 and find

K1(x) ≈ 1

x
+

x

2
ln

(x

2

)

+
x

2

(

γE − 1

2

)

+ ... (44)
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where γE = .5772... is the Euler constant. Then

Σ′

2(/p = m0,p = 0) = −α m0

π

∫ 1

0

(1 + t)dt
[

ln (m0a) + ln (t)) + γE − 1

2

]

(45)

where α(the fine structure constant)=e2/4π. Integration yields after

putting back the constants ~ and c

Σ′

2(/p = m0,p = 0) = −α m0

2π

[

3 ln
(m0ca

~

)

+ 3γE − 4
]

. (46)
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