
THE SCHRÖDINGER EQUATION (A REVIEW)

We do not derive F = ma; we conclude F = ma by induction from

a large series of observations. We use it as long as its predictions agree

with our experiments. As with many theories, it has limitations.

Based on experimental observations, particles are found to have wave

properties. In the same manner in which we conclude (not derive)

from a large series of observations the equation F = ma, we now search

for a wave equation for particles that will be in agreement with our

observations. The goal of this paragraph is to find (not derive) the

wave equation for a non relativistic free particle. We start by assuming

that the wave function for a free particle can be written as the plane

wave

φ(x, t) = exp 2πi(x/λ− νt). (1)

This is a wave with a constant frequency ν and a constant wavelength

λ. The particles energy E and its momentum p are related to the

wavelength and the frequency by E = hν and p = h/λ. So the wave

function can be written
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2 THE SCHRÖDINGER EQUATION (A REVIEW)

φ(x, t) = exp
i

~

(

px− Et
)

(2)

where h is Plancks constant and ~ = h/2π. This wave function is a

wave with a constant energy and a constant momentum. We seek the

wave equation which has the above wave function as its solution. For a

free non-relativistic particle, the energy is given by E = p2/2m where

m is the mass of the particle, and the hamiltonian H is equal to the

energy. Notice that two derivatives of the wave function with respect

to x have the effect of multiplying the wave function by i2p2/~2 and

one derivative with respect to t has the effect of multiplying the wave

function by −iE/~. So guess that the wave equation takes the form

−~
2

2m

∂2φ(x, t)

∂x2
= i~

∂φ(x, t)

∂t
. (3)

Substitute φ in the above equation and find

p2

2m
φ(x, t) = Eφ(x, t) = Hφ(x, t). (4)

Thus, we recover the free particle relationship, E = p2/2m = H. So the

assumed wave function and Eq. (3) are consistent with our knowledge of

particles and waves. Eq. (3) is identified as the Schrödinger equation

for a free particle. Notice that the replacement p → −i~ ∂/∂x and

E → i~ ∂/∂t takes Eq. (4) back to Eq. (3). So operators will be
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associated with measurable quantities such as momentum and energy.

We may also associate an operator with the hamiltonian, and write

Hφ(x, t) =
−~

2

2m

∂2φ(x, t)

∂x2
= Eφ(x, t). (5)

The goal of this paragraph is to find the wave equation for a free non-

relativistic particle moving in three dimensions. We start by assuming

that wave function for such a free particle can be written as the plane

wave

φ(x, t) = exp
i

~

(

p · x −Et
)

= exp
i

~

(

pxx+ pyy + pzz − Et
)

(6)

where x = (x, y, z) and p = (px, py , pz). Eq. (6) is the generalization

of Eq. (2) to three dimensions. Guess that the three dimensional wave

equation for a free particle takes the form

−~
2

2m

( ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

φ(x, t) = i~
∂φ(x, t)

∂t
. (7)

Substitution of Eq. (6) into Eq. (7) yields

(p)2

2m
φ(x, t) =

(p2
x + p2

y + p2
z)

2m
φ(x, t) = Eφ(x, t) (8)

as is required for a free particle. Eq. (8) is identified as the three-

dimensional Schrödinger equation for a free particle. Notice that the
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replacements px → i~∂/∂x, px → i~∂/∂x, and px → i~∂/∂x take

Eq. (8) back to Eq. (7).

Introduce the operator

∇ = î∂/∂x+ ĵ∂/∂y + k̂∂/∂z (9)

where î, ĵ, k̂ are the Cartesian unit basis vectors. Introduce the notation

∇2 ≡ ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (10)

Finally, the three-dimensional Schrödinger equation for a free particle

can be written

−
~

2∇2φ(x, t)

2m
= i~

∂ φ(x, t)

∂t
. (11)

The replacement p → −i~ (̂i∂/∂x + ĵ∂/∂y + k̂∂/∂x) = −i~∇ and

E → i~ ∂/∂t in Eq. (8) takes us to Eq. (11). The symbol φ will be

used for the wave function of a free particle. So we write

Hφ(x, t) = −
~

2∇2φ(x, t)

2m
= Eφ(x, t). (12)

Introduce the wave vector k where |k| = |p|/~ = 2π/λ, and intoduce

the angular frequency ω = E/~ = 2πν. So now
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φ(x, t) = exp i
(

k · x− ωt
)

= exp i
(

kxx+ kyy + kzz − ωt
)

(13)

The following normalization is often used:
∫

φ∗

2 φ1 d
3x = δ3(k2 − k1).

In order that this is true, set φ(x, t) = exp i(k · x − ωt)/(2π)3/2, and re-

call
∫

exp(−i(k2 − k1) · x)d3x = (2π)3δ3(k2 − k1). Note that E2 = E1

when p2 = p1, or equivalently ω2 = ω1 when k2 = k1, since ω = ~k2/2m.

A normalization that will be used in future papers is box normaliza-

tion. The particle is placed in a large but finite box. First, consider a

one dimensional box of length L, which is centered at the origin. Peri-

odic boundary conditions are imposed on the wave functions, i.e., the

wave function at one end of the box is equated to the wave function

at the other end of the box, so exp (ikL/2) = exp (−ikL/2). Thus,

sin(kL/2) = 0, so k = 2πn/L where n is an integer. The requirement

∫

+L/2

−L/2
φ∗

2φ1 d
3x = δk2,k1

is fulfilled if

φ(x, t) =
1

L1/2
exp i

(

kx− ωt
)

. (14)

Here δk2,k1
= 1 when k2 = k1, and δk2,k1

= 0 when k2 6= k1. In three

dimensions

φ(x, t) =
1

V 1/2
exp i

(

k · x − ωt
)

(15)
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where V is the volume of the box. So to go from the first normalization

to box normalization, replace (2π)3/2 by V 1/2.

When an external force, which is derivable from a potential energy

V (x), acts on the particle, then the total energy E is given by the sum

of the kinetic energy and the potential energy, i.e., E = p2/2m+V (x).

The hamiltonian is again the energy, so H = p2/2m+V (x) = E. Gen-

eralizing the free particle Schrödinger equation to include conservative

forces, we write

Hψ(x, t) = −
~

2∇2ψ(x, t)

2m
+ V (x)ψ(x, t) = i~

∂ ψ(x, t)

∂t
= Eψ(x, t).

(16)

This is the Schrödinger equation when conservative forces are present.

Its justification and acceptance is based on agreement with experiment.

The symbol ψ will be used for the wave function when the particle is

subjected to forces.

To include an interaction of a charge q with an electro-magnetic

field, introduce the three-dimensional vector potential A. The potential

energy is now given by qΦ where Φ is the potential. The hamiltonian

is

H =
1

2m

(

p−
q

c
A

)2
+ qΦ, (17)
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and the Schrödinger equation for a charged particle in an electro-

magnetic field is

Hψ =
1

2m
(−i~∇−

q

c
A) · (−i~∇−

q

c
A)ψ+ qΦψ = i~

∂ ψ

∂t
= Eψ. (18)

This equation is in good agreement with experiment at non-relativistic

speeds.

The last subject will be eigenvalue equations. Let O be an opera-

tor associated with a measurable, physical quantity. Sometimes, the

application of O to a function f results simply in the product of a

number o times f . The equation Of = of is called an eigenvalue equa-

tion; the number o is called the eigenvalue, and the function f is called

the eigenfunction. The importance of an eigenvalue equation is that

if the wave function of a particle is an eigenfunction of the operator,

then a measurement of the associated physical quantity will yield the

eigenvalue associated with that eigenfunction.

Consider the momentum operator −i~ ∂/∂x. A non-normalized eigen-

function is exp (ipx/~) and the eigenvalue is p since

−i~
∂(exp(ipx/~))

∂x
= p exp (ipx/~). (19)

A particle with its wave function equal to an eigenfunction of mo-

mentum has a definite momentum. Since the value of the momentum
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eigenvalue p is not restricted, there are an infinite number of momen-

tum eigenvalue equations. Each of these equations has its eigenfunction

and associated eigenvalue.

The energy operator i~ ∂/∂t has eigenfunction exp (−iEt/~) with

eigenvalue E since

+i~
∂(exp(−iEt/~))

∂t
= E exp (−iEt/~). (20)

A particle with its wave function equal to an eigenfunction of energy

has a definite energy. Similarly, the energy operator has an infinite

number of eigenfunctions and eigenvalues. Now observe that the wave

function of Eq. (2) is an eigenfunction of both the momentum and

the energy. Also notice that Eq. (6) is the eigenfunction of the three

dimensional mementum operator −i~∇ with eigenvalue p.

Particles may have a spin angular momentum. For the electron, the

spin angular momentum is ~/2, and the z-component of spin angular

momentum is ±~/2. The electron spin operator can be represented by

S = (~/2)σ where σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, and σz =

(

1 0
0 −1

)

.

These are the Pauli matrices. The operator σz has eigenfunction

(

1
0

)

and eigenvalue +1 since

σz

(

1
0

)

=

(

1 0
0 −1

) (

1
0

)

= +1

(

1
0

)

(21)
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This is referred to as a spin up electron since the z-component of spin

angular momentum is ~/2. Recall Sz = ~/2σz . This operator has a

second eigenfunction

(

0
1

)

with eigenvalue -1 since

σz

(

0
1

)

=

(

1 0
0 −1

) (

0
1

)

= −1

(

0
1

)

. (22)

This is referred to as a spin down electron since the z-component of

spin angular momentum is −~/2. Thus, Sz and σz each have two

eigenfunctions and two eigenvalues. An arbitrary spin wave function

will be a linear combination of the above two spin wave functions. The

total wave function of a free electron is the product of φ(x, t) and a

two component spin wave function.

As pointed out earlier, all theories have limited applicability. The

Schrödinger equation is not relativistic. Operators, wave functions,

wave equations, eigenvalue equations, and spin are put to use in finding

a relativistic wave equation, namely, the Dirac equation, which is the

subject of the next review paper.


